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FLUTTER OF ELASTICALLY SUPPORTED ORTHOTROPIC

PANELS INCLUDING THE EFFECTS OF FLOW ANGLE

By James Wayne Sawyer

Langley Research Center

SUMMARY

A theoretical panel flutter analysis and computer program was developed which

is capable of analyzing an orthotropic panel with in-plane loads, at various angles of

cross flow and with two opposite edges mounted on flexible supports and the other two

edges simply supported. The resulting modal analysis uses linear piston-theory aero-

dynamics and includes both aerodynamic and structural damping. Calculations were made

for typical panels with no in-plane forces showing the effect on flutter of various deflec-

tional edge-support conditions, flow angle, and aerodynamic and structural damping. The

results show that large reductions in dynamic pressure for flutter are possible with only

small changes in flow angle, and the reduction is greater for elastically supported panels

than for simply supported panels. Aerodynamic damping has a significant stabilizing

effect at all flow angles except zero, whereas structural damping has negligible effect.

INTRODUCTION

Interest in reentry and sustained high-speed flight has resulted in the need for a

system to protect the vehicle's primary structure from high surface temperatures. Sev-

eral types of thermal protection systems are being developed, including both metallic and

nonmetallic heat shields. (See, for instance, refs. 1 to 4.) One type of thermal protection

system of interest is shown in figure 1 and consists of a flexible thermal insulation blanket

covered by a wavy metallic surface (corrugated or corrugation stiffened) which is attached

to the primary structure by flexible supports. The supports must be flexible enough to

allow thermal expansion without imposing large stresses but strong enough to transmit

airloads to the primary structure. The wavy surface geometry required to accommodate

thermal strain results in a panel with highly orthotropic stiffnesses which in service will

experience flow over its surface at angles other than parallel to the corrugations. As a

result of the flexible supports and flow angle, panel flutter becomes an important factor

to consider in the design of such a panel. This dependence on flow angle and flexible sup-

ports has been shown experimentally in reference 5 in which orthotropic panels mounted
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on flexible supports were shown to experience large reductions in critical flutter dynamic

pressures for only small changes in flow angle.

Previous theoretical investigators have studied the influence of boundary conditions

and flow angle on flutter of orthotropic panels separately. For example, references 2

and 6 to 9 have studied the effects of flexible supports on flutter for panels at flow angles

of 00 and 900, and references 10 to 13 have studied the effects of arbitrary flow angles on

flutter for panels with classical (simply supported or clamped) boundary conditions. No

theoretical panel flutter studies have been made, however, for panels mounted on flexible

supports and at arbitrary flow angles.

The present investigation was undertaken to develop an analysis and computer pro-

gram that is capable of analyzing an orthotropic panel at various flow angles and with

two opposite edges mounted on flexible supports and the other two edges simply supported.

The resulting modal analysis uses linear piston-theory aerodynamics and includes in-plane

loads and both aerodynamic and structural damping. The aerodynamic theory treats the

surface as a flat plate and does not take into account wavy surfaces such as shown in

figure 1. The number of modes in each direction can be varied to insure that converged

solutions are obtained. Results are presented for typical panels with no in-plane loads

showing the effect on flutter of various edge-support conditions, flow angle, and aerody-

namic and structural damping. Flutter mode shapes and frequencies are presented for a

typical panel at various flow angles.

SYMBOLS

A Fourier series coefficients (see eq. (6))

A quantity defined by equation (15a)

a panel length (x-direction)

B frequency parameter defined by equation (15b)

b panel width (y-direction)

Cmn constant of integration

c free-stream speed of sound

Dmn constant of integration
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Dx panel bending stiffness in x-direction

Dy panel bending stiffness in y-direction

Dxy panel twisting stiffness

Dx

Dy

1 - IxLy

D12 = D y + gxD2

ga aerodynamic damping coefficient (see eqs. (13))

gb bending structural damping coefficient

gm membrane structural damping coefficient

Kd,Kr,Kt deflectional, rotational, and torsional spring constants, respectively, per

unit length

Kd,Kr,Kt nondimensional deflectional, rotational, and torsional spring constants,

respectively

M Mach number

m number of half-waves in streamwise direction

Nx,Ny uniform in-plane loads per unit length in x- and y-directions, respectively

n number of half-waves in cross-stream direction

q dynamic pressure of airstream

r,s integers

t time
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w lateral deflection of panel

Wmn lateral deflection of panel describing shape of natural mode of vibration

X function describing shape of natural mode of vibration in x-direction
(see eqs. (16) and (17))

x,y Cartesian coordinates of panel (see fig. 2)

x,y fixed coordinates based on stream direction (see fig. 2)

a complex frequency coefficient

amn complex natural frequency coefficient

/3 compressibility factor

y panel mass per unit area

E,6 parameters associated with characteristic roots (see eqs. (18) and (19))

A local cross-flow angle, deg

x dynamic-pressure parameter, 2qa3 /)3D 1

Xcr dynamic-pressure parameter at flutter

Ix,Iy Poisson's ratio associated with curvature in y- and x-directions, respectively

nondimensional coordinate, x/a

/1 nondimensional coordinate, y/b

P free-stream air density

' real part of complex-frequency coefficient

w imaginary part of complex-frequency coefficient
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r fundamental frequency of simply supported beam, (2/a2)Dy,
radians per second

Subscripts:

m,r number of half-waves in x-direction

n,s number of half-waves in y-direction

ANALYSIS

Flutter Equation

A flutter analysis is presented for a flat orthotropic panel with supersonic flow at

Mach number, M, over one surface at arbitrary cross-flow angle, A. The panel and

coordinate system are shown in figure 2. The panel edges at x = a are supported by

deflectional, rotational, and torsional springs, and the other two edges (y = 0 and b) are

simply supported. The pan-el is loaded by uniform in-plane loads, Nx and Ny, which

are considered positive in compression. The aerodynamic loading is given by linear

piston theory (which assumes a smooth exterior surface) and includes aerodynamic

damping. The governing differential equation assuming linear small-deflection theory is

(see ref. 10)

( + igb) (D 1 - + 2D 1 2  2 + D2 + 2
ax4  ax2 2 y 2 8y4  ax2 ay2

2  aw 2q aw (1)
c 2 at ax

where

D x

1 1 - PxIy

Dy
2 1- xLy

D12 = Dxy + ixD 2
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gb and gm are bending and membrane structural damping coefficients (see ref. 14),

and pc is the aerodynamic damping term. After transforming the aerodynamic

loading terms to panel coordinates (see fig. 2) and nondimensionalizing, equation (1)

becomes

4 2D1 2  a4w 4/D2 a4w
1 + igb) 4 4 b 2 a72 1 B - \84

xa 2 /( Nya 4 (2 -2 a \

+ + igA) b2 )a2 at2

pca4 t + (cos A) + a (sin A) _ =0 (2)
D1 k at b

The boundary conditions at the simply supported edges are

w(x,O,t) = w(x,1,t) = (x,O,t) = (x,l,t) = 0 (3)

At the spring-supported edges, the boundary conditions obtained from reference 15 are

F x 2 1 =0 (4)

2

w 2 2 2 2D y + xD2  8w\ 83w
KRdw K D1 / 92a a5 3

=Nx a2 0 (5)
D1 / 1

2

where

K d a3

Kd

Kra
Kr-S D 1

Kta
Kt
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and Kd, Kr,, and Kt are the respective deflectional, rotational, and torsional spring

constants per unit length.

Flutter Solution

Assume the solution of equation (2) to be in the form

w = Amnwmneat (6)
m=l n=l

where a = 4/+ iw. The natural mode shapes, wmn, satisfy the boundary conditions,

equations (3), (4), and (5), and the following natural vibration equation obtained by setting

the dynamic terms in equation (2) equal to zero:

&4wmn a1 2 12( 4Wmn a 4(D2 mn
+ + ig ) [ + 2 D1 \D 2 b D1

Na 2 4 2 -

m) D1 82 b2D1 2

+ a mnw3 + a mnmn = 0 (7)

The complex frequency coefficient, am, is the damped natural frequency coefficient of

the mnth mode.

Substituting the expression for w given by equation (6) into equation (2) and

making use of equation (7) results in the following:

00 00 a4 a2W pca4a
Z Z a (nID - a2 )mn + PC mn- a)wmn

m=l n= 1 D1

+ osA) w a (sin A) mn Amn = 0 (8)
gD1 a b

If wmn is taken in the form

Wmn = Xmn(O )(sin niiij) (9)

the term sin niyT satisfies the boundary conditions, equation (3), directly. A Galerkin

type solution is then obtained by substituting the expression for wmn given by equation (9)
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into equation (8), multiplying through by Xrs sin s7r, and integrating over the total area.

Performing the integration and rearranging the terms results in the following set of

simultaneous equations:

Amn 2(a mn - a2) + 4 rn pr T r= mrns

00 A ns ( 1 - (-1)s+n)
S ms -( ) sin A -0 (n / s) (10)

T4 b s=i 4bs 2- n 2 )

where

1/2 aXm(
Qmrns = 1- 1/2 Xrs dx (11)

1/2
Pmrns = - 1/ 2 XmnXrs dx (12)

and

2 74D 1

ya 4

g pc P (13)
a Wr

- 2qa 3

For a nontrivial solution to equation (10), the determinant of the coefficients of Amn
must equal zero. A standard eigenvalue routine for a square complex matrix was used

to calculate the eigenvalues of equation (10) which render the determinant equal to zero.

The complex frequency coefficients, a, are the eigenvalues. Flutter is considered to

occur for that value of the dynamic-pressure parameter, X, for which one of the imagi-

nary frequencies changes sign (see ref. 14).

Natural Modes and Frequencies

The natural (no-flow) mode shapes, Xmn, and frequency coefficients, amn, are

needed to determine the coefficients in equation (10). These are obtained from the
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differential equation (7) and boundary conditions, equations (4) and (5). Substituting equa-
tion (9) into equation (7) results in the following differential equation, in Xmn:

n+ X - B4Xm = 0 (14)
mn mn mn

where

1 + ig\ Na4  2D
A + i- 4 2 D12 n (15a)

igb D 17T2 Yb Di

1 + ig 4 D2 ya 4 a2  pcaaB +ba (15b)1 + ig/ D1b2, 2  b D1  D1 T4 (1 + igb) D17T4(1 + igb)

Appropriate mode shapes which satisfy the boundary conditions, equations (4) and (5), are
given as follows (see ref. 7):

For even modes

Xmn = Cmn cosh Emn + Dmn cos 6mn (16)

For odd modes

Xmn = Cmn sinh Emn + Dmn sin 6 mn (17)

The relationship between mn and 6 mn and the coefficients of equation (14) are
obtained upon substitution of equation (16) or equation (17) into equation (14):

Smn= y )1/ (18)

and

1/2

6m ( =7+ B (19)
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In order to satisfy the boundary conditions, the expressions for Xmn given by

equations (16) and (17) are substituted into equation (9) which is then substituted into

equations (4) and (5). Solution to the resulting two simultaneous equations provides a

transcendental equation in emn and 6 mn.

Method of Computation

In order to obtain the aerodynamic coefficients of the flutter determinant (eq. (10)),

mode shapes and frequencies are required. These are obtained for a given value of A

by choosing B and solving for -Emn and 5mn in equations (18) and (19). These values

are then substituted into the transcendental equation. If the transcendental equation is

not satisfied, B is varied and the process is repeated. With the final values of Emn

and 6 mn, the mode shapes, Xmn, are defined within an arbitrary constant and the fre-

quency coefficients, amn, are obtained from equation (15b). Since the coefficients

as defined by equations (15) are complex, the resulting frequencies are complex

quantities.

When flow angle is not a variable, general flutter calculations can be made that

cover a wide range of panels. Two geometry-stiffness parameters that are usually spec-

ified in the literature (see ref. 6) and supply all the information needed to make general

calculations for zero flow angle are

Ax=_(a 2 D12b) D1

D12
C=

These parameters are sufficiently general that one solution is applicable to panels with

various length-width and stiffness ratios. With the inclusion of flow angle, however,

equation (10) shows that the panel length-width ratio, a/b, must also be specified. By

specifying a/b, the parameters Ax and C become functions only of the ratios of

flexural stiffness properties, D1 2 /D 1 and D1 2 /D 2 . Thus, flutter calculations must be

made for the specific panel of interest. Flutter results are presented in the next section

for panels with a wide range of stiffness parameters.

RESULTS AND DISCUSSION

Range of Parameters

Calculations were made for a wide range of flow angularity, boundary conditions,

and panel characteristics. Flow angle was varied between 00 and 900, and calculations
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were made for deflectional spring stiffness, Kd, of 10, 100, 500, and o. In order to

keep the variables to a reasonable number, however, in-plane loads, Nx and Ny, and

spring supports, Kr and Kt, were set equal to zero. Aerodynamic and structural

damping coefficients, ga, gb, and gm, were set equal to zero for all panels except for

one representative panel, which was used to study the effects of damping on flutter. Cal-

culations were made for D12D 1 of 0.05, 0.25, and 0.50; D1 2/D 2 of 2, 20, 50, and 500;

and (a/b)2 of 1.0 and 10. This range of parameters was chosen because they include

most orthotropic panels that have been investigated either experimentally or theoretically

in the literature (see, for instance, ref. 16) and most panels that are of current interest.

Convergence

In normal-mode flutter analyses, one of the questions that naturally arises is how

many modal terms are required to obtain a converged solution. Previous studies have

shown that, for flow parallel to a panel edge (zero flow angle), one modal term normal to

that edge is sufficient in flutter analyses, and the number of modal terms required par-

allel to the edge depends on the degree of orthotrophy (see, for example, ref. 7). When

the flow angle is not zero, however, several modal terms may be required in both direc-

tions, but the number is dependent on panel orientation and boundary conditions. Using

more modal terms than are necessary results in a considerable waste in computer run

time and storage and may make the solution prohibitively costly.

Convergence data are given in figures 3(a), 3(b), and 3(c) where x1 /3 is shown as

a function of the number of modal terms for a typical orthotropic panel with various

deflectional spring edge support conditions and at flow angles of 00, 900, and 100, respec-

tively. Calculations are made for D12/D 1 = 0.5, D1 2/D 2 = 500, and (a/b)2 = 1.0. For

the extreme orientations (A = 00 and 900), calculations indicate only one modal term is

required in the direction perpendicular to the flow to obtain converged solutions regardless

of boundary conditions. For A = 00 (see fig. 3(a), direction of maximum flexural stiff-

ness alined with flow), converged flutter values are obtained for only four terms in the

D1 direction for all values of Kd for which calculations were made. For Kd = o,
the k1/3 values converge to the exact value obtained from reference 17. The converged

k1/ 3 value for Kd - 10 is slightly higher than the exact value shown for free edge con-

ditions (Kd = 0) (see ref. 7). For A= 900 (see fig. 3(b)), the situation is quite different,
as converged results are seen to be strongly dependent on the boundary conditions. Con-

verged flutter values are obtained with four terms in the D2 direction for Kd = 10, with

eight terms in the D2 direction for Kd = 100, and with 20 terms in the D2 direction

for Kd = 500. For Kd = o (simply supported edge), the flutter solution is not converged

when even 60 terms are used; X1/3 is considerably below the exact value and, further,
convergence is extremely slow. Thus, for orthotropic panels with simply supported edges

11



with flow normal to the direction of maximum flexural stiffness, a large number of modal

terms are needed to obtain converged solutions. Similar trends have also been found to

be true for panels with clamped edges (see ref. 13). As Kd decreases, however, the

number of terms required for convergence decreases rapidly. When using only the first

two terms in the D2 direction (n = 1,2) for Kd = 100 and 500 (see fig. 3(b)), x1/ 3 is

seen to be considerably higher than the converged values. For these values of Kd,

higher modes coalesce for the lowest value of 11/3, and the absence of these modes in

the two-term solution results in erroneous values.

Convergence results for flow at A= 100 are shown in figure 3(c) where 1 /3 is

plotted against the number of modal terms in the D2 direction. Flutter points are shown

for D1 modal terms from 1 to 5. For A= 100, one term in the D1 direction still

gives converged solutions for Kd = 10, 100, and 500 and for 4, 8, and 16 terms in the

D2 direction, respectively. For Kd = oo (simply supported), however, one term in the

D1 direction results in a diverging solution which becomes progressively worse as more

terms in the D2 direction are included in the calculations. When three terms are used

in the D1 direction, only four terms are required in the D2 direction to give converged

flutter values for Kd = o9

The variation in the modal terms required for convergence is shown in figure 4

where x1 /3 is plotted as a function of flow angle for D12/D 1 = 0.5, D1 2/D 2 = 500, and

(a/b)2 = 1.0. The curves are the flutter boundaries for the values of Kd shown. The

numbers in parentheses indicate the number of terms in the D1 and D2 directions

required to obtain convergence within ±2 percent. The Kd = O curve is not shown for

A > 100 owing to the large amount of computer time required for convergence. The data

show that, even for small flow angles, considerably more D2 terms are required for

convergence than D1 terms. For A > 300 only one term in the D1 direction is

required for all Kd values shown, and the number of terms required in the D2 direction

for A = 300 is adequate for all higher values of A.

Flutter Frequencies and Mode Shapes

Further insight into the modal terms required for convergence can be gained

through examination of the influence of flow angle on frequencies and mode shapes.

Panel frequencies for D12/D 1 = 0.5, D 12/D 2 = 500, and (a/b)2 = 1.0 with Kd = 100

are shown in figure 5 as a function of A for flow angles of 00, 20, 150, and 900.

For A= 00 (fig. 5(a)), increasing X results in the coalescence of the frequencies of

modes m = 1 and 2 and n = 1 at Xcr 118. Further increases in X result in a pair

of frequencies becoming complex conjugates as shown by the dashed curve. Although the

(1,1) and (1,2) frequencies are identical at X -75, panel instability does not occur. For

A= 20 (fig. 5(b)), however, coalescence of the (1,1) and (1,2) modes does occur at
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Xcr 70 and remains unstable for further increases in X. In reference 10, where two

terms were used in each direction, a stable region was found at values of X greater

than the initial instability value. Such a stable region clearly does not exist if a sufficient
number of modes are used in the analysis. These data also suggest that, for small

increases in A from zero, large reductions in critical dynamic pressure occur. This

behavior must be taken into account in the design of wavy (highly orthotropic) surface

panels since some cross flow will be experienced in actual flight.

For A= 150 (fig. 5(c)), the (1,3) and (1,4) modes coalesce at a ,cr value of

approximately 17, which represents a large drop from that obtained at A = 20. For
A= 900 (fig. 5(d)), the (1,3) and (1,4) modes still coalesce but for values of Xcr 5.

The flutter mode shapes for D12/D 1 = 0.5, D1 2/D 2 = 500, (a/b)2 = 1, and
Kd = 100 are shown in figure 6 for flow angles of 00, 20, 150, and 90 0 . For

A = 00 (fig. 6(a)), the mode shape has two half-waves in the direction of maximum

panel flexural stiffness and one half-wave in the direction of minimum panel flexural

stiffness. The maximum deflection occurs on the downstream portion of the panel. At
A = 20 (fig. 6(b)), the flutter mode shape is considerably different from that at A= 00,
with the maximum deflection shifting in the direction of minimum flexural stiffness. At
a flow angle of 150 (fig. 6(c)) the flutter mode shape is complicated but basically is com-

posed of three half-waves in the direction of minimum flexural stiffness and one half-wave
in the opposite direction. Further increases in A have little additional effect on this

mode shape (see fig. 6(d) for A= 900).

Parametric Studies

Effects of flow angle.- The effects of flow angle on flutter are shown in figure 7

where flutter boundaries are presented as a function of flow angle for D12/D 1 = 0.05

and (a/b)2 = 10. Boundaries are shown for Kd = 10 (fig. 7(a)), Kd = 100 (fig. 7(b)),
and Kd = (fig. 7(c)). The curves of each figure are for values of D12/D 2 of 2, 20,
50, and 500. The actual calculations are indicated by the symbols on the curves. For

Kd = 10 (fig. 7(a)) and D1/D2 = 500, an order-of-magnitude reduction in the flut-
ter dynamic pressure occurs over the first 100, with less severe reductions there-
after. For smaller values of D1 2/D 2 (corresponding to increases in D2 ), the reduc-

tion in flutter dynamic pressure with flow angle is less and is spread out over a wider
flow-angle range. For D12/D 2 = 2, even an increase in the flutter dynamic pressure is
obtained with increasing flow angles over most of the flow-angle range. This latter

behavior is similar to that expected for an isotropic panel with a similar a/b ratio.

Two points are shown at A= 00 for D12/ 2 = 500 and are connected by a dashed line.
The upper point is the critical flutter value at A= 00 and is the same for all values

of D12/D 2 . The lower point is the value of X where the two lowest frequencies cross
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(see fig. (5)). Increasing the flow angle from zero results in the critical flutter X

dropping from the higher value at A = 00 to the lower curve for a very small A (for

example, A < 10). Thus, for all practical purposes, the lower values should be used,

even for A= 00

Increasing the deflection spring stiffness, Kd, to 100 (fig. 7(b)) and a (fig. 7(c))

results in flutter boundaries similar to those obtained for Kd = 10 but higher throughout

the flow-angle range.

Flutter boundaries for D12/D1 = 0.25 and 0.5 are shown in figures 8 and 9,

respectively, and have trends similar to those discussed previously for D1 2/D 1 = 0.05.

Panels with large D1 2/D 1 values are more stable, however, as indicated by higher

values of X throughout the flow-angle range. For D12/D1 = 0.25 (fig. 8) and A= 00,

note that cr is lower for Kd = 100 than for Kd = 10. This unusual trend has been

shown previously by an exact analysis in reference 7 and is attributed to a change in the

flutter mode. With Kd = 10 the lower vibration modes approach those of rigid-body

translation and rotation and the panel becomes more resistant to flutter. At D12/D 1 = 0.5

(fig. 9), this phenomenon does not occur.

Effects of flexural stiffness.- The data presented in figures 7 to 9 are replotted

in figure 10 as a function of D1 2/D 1 for flow angles of 00, 50, 100, and 200. Flut-

ter values nondimensionalized by Xcr(. ) (the value of X for a simply supported

panel at the flow angle in question) are shown for (a/b)2 = 10, Kd = 100, and D12/D 2
of 2, 20, 50, and 500. In figure 10(a), the boundaries for A = 00 are independent of

values of D12/D2 and are, therefore, functions only of Kd. Increasing values of stiff-

ness ratio, D1 2/D 1, result in flutter boundaries approaching those for the simply sup-

ported panel (Rd = o). The flutter boundary is also shown for Kd = 10 because of its

peculiar trend. The unusual behavior for Kd = 10 is due to the phenomenon that was

noted previously in the discussion of figure 8 for D12/D1 = 0.25. Flutter values are

obtained for Kd = 10 that are even higher than for simply supported panels for the range

of D12D 1 from 0.1 to 0.2. This behavior is consistent with results obtained from an

exact analysis presented in reference 7.

Flutter boundaries for A> 00 are seen to be dependent on both D1 2/D 1 and

D1 2/D 2 . For small values of D1 2/D 1 (for example, D1 2/D 1 = 0.05), increases in D2
(D 1 2/D 2 decreases) have little effect on X; however, for large values of D12/D1
(for example, D1 2 /D 1 = 0.5) increases in D2 have a large effect on X. Note also that

the influence of D12/D 1 is strongly dependent on the flow angle; for example, with

A > 100 and D12 /D2 > 50, changes in D1 have negligible influence on flutter. Thus,

the curves tend to identify the range of influence of stiffnesses D1 and D2 and flow

angle on panel flutter.
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Effects of length-width ratio.- Flutter boundaries for D1 2/D 1 = 0.5 and

(a/b)2 = 1.0 are presented in figure 11. The effects of panel length-width ratio on the

flutter boundaries may be seen by comparing the boundaries given in figure 11 with those

presented in figure 9. Reducing the panel length-width ratio has a large destabilizing

effect as indicated by considerably lower values of X throughout the flow-angle and

Kd range. The destabilizing effect is more pronounced for elastically supported panels

than for simply supported panels.

Effects of Aerodynamic and Structural Damping

The effects of aerodynamic and structural damping on the flutter of unstressed

orthotropic panels are shown in figure 12. Calculations are made for D1 2/D 1 = 0.5,
D12/D2 = 500, (a/b)2 = 1.0, Kd = 100, and for values of ga = 0.2 and gb = 0.05. The

membrane structural damping coefficient, gm, is not considered since it has an effect

only if there are in-plane forces acting on the panel. As can be seen, aerodynamic

damping has a significant stabilizing effect at all flow angles except zero, whereas struc-

tural damping has negligible effect.

CONCLUDING REMARKS

A theoretical panel flutter analysis and computer program was developed which is

capable of analyzing an orthotropic panel with in-plane loads, at various angles of cross

flow, and with two opposite edges mounted on flexible supports and the other two edges

simply supported. The resulting modal analysis uses linear piston-theory aerodynamics

and includes both aerodynamic and structural damping. The number of modal terms

used in each direction to analyze the panel can be varied to insure that converged solu-

tions are obtained.

The inclusion of cross-flow angle as a variable in a panel flutter analysis requires

that the panel geometry/stiffness properties be defined. Thus, flutter calculations must

be made for each specific panel. Calculations made for typical unstressed orthotropic

panels with deflectional spring supports indicate that fewer modal terms are required for

converged solutions for elastically supported panels than for simply supported panels.

The calculations further show that an order-of-magnitude reduction in flutter

dynamic pressure is possible with only small changes in flow angle. Also, the effects of

flow angle are more pronounced for elastically supported panels than for simply sup-

ported panels. In addition, the results indicate that the influence of flexural stiffness,
D1, on flutter of elastically supported panels diminishes with small increases in flow

angle from zero and that the range of influence of flexural stiffness can be identified as

a function of flow angle.
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Figure 3.- Convergence of flutter data. D12/D1 = 0.5, D 1 2 /D 2 = 500, (a/b)2 = 1.0,

ga = 0, gb = 0, and gm = 0.
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Figure 4.- Modal terms required for convergence as a function of cross-flow angle.

D1/D 1 = 0.5, D12 2 = 500, (a/b)2 = 1.0, ga = 0 , gb = 0, and gm = 0.
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gm = 0.
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Figure 6.- Theoretical flutter mode shapes. D12/D 1 = 0.5, D1 2/D 2 = 500,
(a/b)2 = 1, Kd= 100, ga= 0, gb = 0, and gm = 0 .
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Figure 7.- Effects of flow angle on flutter for D1 2/D 1 = 0.05, (a/b) 2 = 10,

ga = O, gb = O, and gm = O.
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Figure 8.- Effect of flow angle on flutter for D12/D 1 = 0.25, (a/b)2 = 10, ga = 0,
gb = 0, an d  gm = 0.
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Figure 10.- Influence of panel flexural stiffness on flutter. (a/b)2 = 10, ga = 0, gb = 0, and gm = 0.
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Figure 12.- Effects of aerodynamic and structural damping on flutter.

D 1 2 /D 1 = 0.5, D 1 2 /D 2 = 500, (a/b)2 = 1.0, Kd = 100.
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